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Molecular polarizability of a molecule characterizes the capability of its electronic system to be distorted by
the external field, and it plays an important role in modeling many molecular properties and biological activities.
In this paper, a set of fast empirical models have been developed to predict molecular polarizability using
two types of approaches. The first type of approaches is based on Slater’s rules of calculating the effective
atomic nuclear shielding constants. The best model (model 1A) of this category has achieved an average
unsigned error (AUE), root-mean square error (RMSE), and average percent error (APE) of 2.23 au, 3.29 au,
and 2.77%, respectively. The second type of model is based on an additive hypothesis of molecular
polarizability. Five models have been constructed using different schemes of atom types. The best model that
applies 14 atom types, model 2e, achieves AUE, RMSE, and APE of 0.99 au, 1.48 au, and 1.24%, respectively.
This performance is much better than those of the models purely based upon chemical composition (model
2A and the Bosque and Sales model), for which errors are about 2-fold higher. It is expected that both model
1A and model 2E will have broad applications in QSAR and QSPR studies.

1. Introduction

The polarizability of an atom or molecule describes the
response of its electron cloud to an external field. The
polarization energy due to an external electric fieldE is
proportional toE2 for external fields that are weak compared
to the internal electric fields between its nucleus and electron
cloud. Technically, polarizability is a tensor quantity, but for
spherically symmetric charge distributions it reduces to a single
number. In many cases, an average polarizability is usually
adequate in calculations. Polarizability appears in many formulas
for low-energy processes involving the valence electrons of
atoms or molecules. It is also widely used to describe the
inductive and dispersive interactions of a molecule or molecular
system.

Polarizability has been extensively applied in drug design. It
is one of the descriptors that are extensively used in QSPR and
QSAR studies. For example, we found that polarizability was
obviously correlated to the logarithm of then-octanol/water
partition coefficient, logP, for a data set of 1904 molecules (r2

) 0.21);1 the correlation coefficient square between polariz-
ability and aqueous solubility was 0.44 for a data set of 1708
molecules.2 Polarizability has been successfully applied by many
researchers in constructing QSPR models for many molecular
properties, including Henry’s law constant,3 aqueous solubil-
ity,4,5 subcooled liquid vapor pressures,6 the partition coefficient
of vaporous chemicals in a water-gas phase,5 vapor pressure,7

heat of vaporization,7 diffusion coefficient,7 etc. In a recent
report, Verma, Kurup, and Hansch successfully applied polar-

izability in QSAR studies of 51 chemical-biological interac-
tions.8 In their studies, polarizability was simply calculated by
adding up the number of valence electrons (NVE) in a mole-
cule: H ) 1, C ) 4, N ) 5, P ) 5, O ) 6, S) 6 and halogens
) 7. The general form of those QSARs is illustrated by

In this equation,C is IC50 or EC50 or the molar contribution of
a compound,k is a weight obtained by regression analysis, and
c is a constant.

Even though the experimental polarizability is mostly deter-
mined by accurate measurements of a dielectric constant or
refractive index (0.5% or better), one should treat many of the
results with some caution if the data are obsolete and when the
results are referred to optical frequencies instead of static ones.

In quantum mechanics, polarizability may be calculated by
solving the coupled perturbed Hartree-Fock (CPHF) equations
with electric field perturbations. In molecular mechanics,
polarization is typically calculated with an atomic dipole
interaction model, and atomic polarizabilities are the key
parameters in those non-additive calculations. In a dipole
interaction model, a molecule’s polarizability is the trace of the
inversion matrix of a 3N × 3N matrix R, which has diagonal
elements being 1/R and off-diagonal elements being the dipole
field tensorTpq, a function of distance between atomsp andq.
The 3N × 3N atomic representation of polarizability can be
reduced to a normal 3× 3 molecular representation tensor. More
details are provided in our recent work9 on atomic polarizability
parametrization for three widely used dipole interaction models,
namely, the Applequist,10 the Thole exponential, and the Thole
linear models.11,12In the following text, we give a brief review
of some fast empirical approaches for estimating static molecular
polarizabilities.
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Besides the above two kinds of methods, a set of empirical
algorithms have been developed to predict the average molecular
polarizability efficiently. Most empirical models are based on
a hypothesis that molecular polarizability is additive. In another
word, the polarizability of a molecule can be obtained by
summing up the contributions of a variety of atoms and/or
functional groups in the molecule. Here is the reasoning: molar
refraction (R) is found to be an additive property, molecular
polarizabilityR is related toRby the Lorentz-Lorenz equation
(eq 2), andR should therefore be an additive property.n is the

refractive index of a molecule (usually at 5893 Å, sodium
D-line), andM andF are molecular weight and molar volume,
respectively.N0 is the Avogadro constant. The additive hypoth-
esis has been extensively used by many researchers in fast
calculation of average molecular polarizabilites. Bosque and
Sales recently developed a model to calculate polarizabilities
of 426 molecules from the chemical composition.13 Although
only 10 descriptors were used, the model achieved a good
predictability (the average percent errors were 2.31% and 1.93%
for the training set and test set, respectively). Stout and Dykstra
extended the additive hypothesis to calculate tensor components
of xx, yy, andzz by adding up the individual contribution of
each atom.14 The atomic polarizabilities of 13 atom types that
covered C, N, O, and F were derived from a high-level ab initio
calculations for over 30 organic molecules containing up to four
non-hydrogen atoms. The average errors were around 10% and
3% for individual tensor elements and isotropic polarizability,
respectively. Miller and Savchik proposed another empirical
approach for calculating average molecular polarizability based
on atomic hybrid components,τA(ahc), or by atomic hybrid
polarizabilities,RA(ahp).15-16 They defined a set of 20τA(ahc)
andRA(ahp) parameters based on atomic hybridizations for ten
elements (C, H, O, N, S, P, and halogens). The average
molecular polarizability relates to the two types of parameters
by eqs 3 and 4, whereN is the total number of electrons. Their
models based on atomic hybrid components and atomic hybrid
polarizabilities achieved average percent errors of 2.2% and
2.8% for about 400 compounds, respectively. It should be
pointed out that the theoretic basis of Verma, Kurup, and
Hansch’s approach to estimate polarizability with NVE is also
the additive property of molecular polarizability.

Besides those additive models, Glen provided an alternative
way to calculate molecular polarizability emprically.17 His model
was based on Slater’s rule for the calculation of effective atomic
nuclear shielding constants. More details of the algorithm are
presented in the Methods section (2.2.1).

In development of a set of atomic dipole interaction models
with the Applequist and Thole schemes,9 we found that the
model performance could be significantly improved by using
14 atom types instead of 10 elements in parametrization. Inspired
by this, we plan to develop a new empirical model according
to eq 5, whereN is the number of atom types,ni is the number
occurrence of atom typei in a molecule, andci is the weight of

atom typei. The theoretical basis beyond this model is the
additive characteristic of polarizability.

Second, we will take advantage of a set of high-quality data
used by Bosque and Sales to reexamine the Glen’s model. A
genetic algorithm developed by ourselves will be applied to
optimize the effective quantum numbersn*, adjustable param-
eters in Glen’s method.

Finally, we also plan to perform quantum mechanical
calculations at the B3LYP/6-31G* level to calculate the CPHF
polarizabilities and to make a comparison to the aforementioned
empirical models as well as to experimental findings.

2. Methods

2.1. Data Sources.The Bosque and Sales data set13 was used
to reexamine the Glen’s model17 and to develop empirical
models from the chemical composition using eq 5. Six molecules
were dropped off due to duplication or apparent errors/typos.
The 420 left molecules are very diverse in structure and include
a variety of functional groups, including hydrocarbons (aliphatic
and aromatic, cyclic and acyclic), alcohols, phenols, ethers,
esters, proxides, aldehydes, ketones, carboxylic acids, amines,
imines, amides, nitriles, nitro derivatives, disulfides, thiophenes,
sulfides, sulfoxides, sulfones, phosphates, halides, etc.

The experimental polarizability,R, was obtained from the
measurements of refractive indexR using the Lorentz-Lorenz
equation (eq 2). The experimental refractive indexes were
measured at 20 or 25°C at the D-line of sodium wavelength
(5893 Å). The whole data set was randomly divided into a
training set (nos. 1-335 in Table S1) and a test set (nos. 336-
420 in Table S1) by Bosque and Sales for model validation.
However, all the models were generated with the whole data
set except those indicated explicitly. The compound names, the
SMILES strings as well as the experimental values are listed
in Table S1 of the Supporting Information.

2.2. Model Construction.2.2.1. Glen’s Approach Reexami-
nation.Theoretically, polarizability may be expressed in terms
of atomic radius (r) of maximum electron density.17

whereri is the atomic radius for electroni, a0 ) 0.5292 Å is
the Bohr radius.n* is the effective quantum number, which is
1, 2, 3, 3.7, 4.0, and 4.2 for principal quantum numbers 1, 2, 3,
4, 5, and 6, respectively,Z is the nuclear charge, ands is a
screening constant that is empirically determined by the
following Slater rules:18

Rule 1: Electrons are divided into groups and each group
has a different shielding constant: (1) 1s; (2) 2s, 2p; (3) 3s, 3p;
(4) 3d; (5) 4s, 4p; (6) 4d; (7) 4f; (8) 5s, 5p; (9) 5d; etc.

Rule 2: Electrons in a higher group do not shield those in
lower groups.
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Rule 3: For s and p valence electrons, electrons in the highest
group contribute 0.35 except the first group (1s), where 0.30 is
used instead, electrons in the one lower group contribute 0.85,
and electrons in other lower groups contribute 1.0.

Rule 4: For d and f valence electrons, electrons in the highest
group contribute 0.35, and electrons in other lower groups
contribute 1.0. The effective nuclear charge isZ - s. Equation
6 is simplified to eq 8 because electrons in the same electron
group have the same radiusrj, where Nj is the number of
electrons in thejth electron group.

The above scheme and parameters perform well in reproduc-
ing many properties for atoms that include atomic radii,
diamagnetic susceptibilities, X-ray levels, and ionization po-
tentials. However, it may not be used directly for molecules
without modification because electron density distribution
around atoms is significantly changed when a molecule is
formed. Glen suggested that after reoptimizing the effective
quantum number the calculated molecular polarizability ac-
cording to eq 6 or 8 could reproduce the experimental values.
Although Glen’s model (n* ) 0.94, 1.88, 2.65, 3.15, and 3.35
for principal quantum numbers of 1, 2, 3, 4, and 5, respectively)
could explain 96.07% of the variation and the standard error of
prediction was 5.28 for 28 molecules in his training set, the
model performed poorly for a 64-molecule test set, for which
the average percent error was 12.5%. Because more than 10
years have passed, it is time to revise the model to incorporate
newly emerged high-quality polarizability data using more
promising optimization methods.

Genetic algorithm, an efficient heuristic optimization method,
has been widely used to solve optimization problems such as
conformational searches, molecular docking, and QSPR model
generation.19-24 The power of GA lies in its abilities to
efficiently deal with multiple dimension problems, no matter
whether the variables are coupled or not. Therefore, GA should
also be suitable to optimize the effective quantum number
parameters in Glen’s model. The following is a brief explanation
on how a genetic algorithm works. A target function is
minimized by a genetic algorithm through three basic operations
that mimic natural evolution and selection, which are mutation,
crossover, and selection. First of all, a set of “chromosomes”,
which encode answers to a question, are randomly generated.
The “genes” in a “chromosome” correspond to the descriptors
in question. For each “chromosome”, the fitness is evaluated
by a scoring function. The higher the score, the better the fitness
and the closer to the real answer it is. New “chromosomes” are
then generated through swapping certain “genes” between
multiple “chromosomes” and mutating “genes” to other values.
In the subsequent selection operation, “chromosomes” with high
fitness are evolved to the next generation and those having low
fitness are allowed to perish. The three operations are iteratively
performed until a termination criterion is met.

A real number-encoded genetic algorithm program developed
by ourselves was applied to optimize the effective quantum
number parameters to minimize the average percent error of
the 420 molecular polarizabilities.

Two models based on the Glen approach17 were investigated.
In model 1A, five effective quantum numbers forn ) 1, 2, 3,
4, and 5 were optimized; in model 1B, we used more than one
effective quantum number for different elements even for the
same quantum number. In total, 15 parameters were optimized.
We intended to find out if the fitting performance could be
improved by using more parameters. It should be pointed out
that in model 1B, the effective quantum numbers somehow lose
their physical meaning and become pure variables. The nuclear

chargesZ, the screening factorss, the number of electrons in
each groupN, and the effective quantum numbersn* of ten
elements (H, C, N, O, F, P, S, Cl, Br, I), are listed in Table 1.
The Gasteiger-Marsili charges were assigned for the 420
molecules using Sybyl7.025 and the numbers of electrons in the
highest groups were adjusted accordingly. Take methanol as
an example, the point charge of oxygen is-0.398; therefore,
the 2s22p4 group has 6.398 electrons, and the 2s22p2 group of
carbon has 3.967 electrons because its charge is 0.033. To
investigate the reliability of the models, model 1A_validation
was generated by using the 335 molecules in the training set.
All the other settings of model 1A_validation were as the same
as those of model 1A.

Important parameters that controlled the GA performance are
listed as follows: (1)Population Size: the number of chromo-
somes in one generation (100). (2)Chromosome Size: the
number of variables in question (5 for model 1A and 15 for
model 1B). (3)Elite Size: the number of “Elite” chromosomes,
which entered the next generation directly (5). (4)Mutation
Probability: the probability of performing mutation on each
gene of each chromosome (0.05). (5)CrossoVer Probability:
the probability of performing crossover on each “chromosome”
in a population (0.40). (6)Selection Methods:tournament. (7)
Tournament Number: number of “chromosomes” that partici-
pate in selection each time (3). (8)Maximum Iteration:the
Maximum iteration of optimization (50 000). GA optimizations
were performed at least four times and the best parameter set
was selected as the final models.

2.2.2. Static Molecular Polarizability Models Based on
Summation of Atomic Polarizabilities.As mentioned in the
Introduction, Bosque and Sales developed a model by summing
up the contribution of each element.13 In this work, we planned
to further improve their model by introducing several more atom

TABLE 1: List of Electron Groups, Nuclear Charge (Z),
Number of Electrons in Echo Charge Group (N), Screening
Factor (s), Effective Quantum Number (n*) and Parameter
Names of Both Models 1A and 1B for Ten Elements

element electron groupZ N s n*
parameter

(model 1A)
parameter

(model 1B)

H 1s1 1 1 0 1 n1 n1
C 1s2 6 2 0.3 1 n1 n2
C 2s22p2 6 4 2.69 2 n2 n3
N 1s2 7 2 0.3 1 n1 n4
N 2s22p3 7 5 3.04 2 n2 n5
O 1s2 8 2 0.3 1 n1 n6
O 2s22p4 8 6 3.39 2 n2 n7
F 1s2 9 2 0.3 1 n1 n8
F 2s22p5 9 7 3.74 2 n2 n9
P 1s2 15 2 0.3 1 n1 n10
P 2s22p6 15 8 4.09 2 n2 n11
P 3s23p3 15 5 10.2 3 n3 n12
S 1s2 16 2 0.3 1 n1 n10
S 2s22p6 16 8 4.09 2 n2 n11
S 3s23p4 16 6 10.55 3 n3 n12
C1 1s2 17 2 0.3 1 n1 n8
C1 2s22p6 17 8 4.09 2 n2 n9
C1 3s23p5 17 7 10.9 3 n3 n13
Br 1s2 35 2 0.3 1 n1 n8
Br 2s22p6 35 8 4.09 2 n2 n9
Br 3s23p6 35 8 11.25 3 n3 n13
Br 3d10 35 10 19.95 3 n3 n13
Br 4s24p5 35 7 30.1 4 n4 n14
I 1s2 53 2 0.3 1 n1 n8
I 2s22p6 53 8 4.09 2 n2 n9
I 3s23p6 53 8 11.25 3 n3 n13
I 3d10 53 10 19.95 3 n3 n13
I 4s24p6 53 8 30.45 4 n4 n14
I 4f14 53 14 38.31 4 n4 n14
I 5s25p5 53 7 48.1 5 n5 n15
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types. In model 2A, ten atom types, that is to say, each element
has only one atom type, are applied. This model was slightly
different from the Bosque and Sales model because six
molecules were dropped off in our data set.

Inspired by the significant performance improvement by
introducing three atom types for sp1, sp2, and sp3 carbons in
our work of atomic polarizability parametrization for a set of
dipole interaction models,9 we decided to allow the three
hybridized carbons to have different coefficients in regression
analysis. This resulted in model 2B.

On the basis of model 2B, we analyzed the error sources of
the prediction and tried to introduce more atom types to reduce
the prediction error. More models, model 2C, model 2D, ...,
were introduced by this way. We want to emphasize again that
an atom type was introduced only when it could significantly
deduce the prediction errors. For the best model, we would
generate a corresponding validation model only using the
training set and make predictions for the test set.

There are many approaches to build up correlations between
a molecular property and its descriptors, which include multiple
linear regression (MLR), partial least-squares (PLS) fitting,
artificial neural networks (ANN), genetic algorithm (GA), etc.
On the basis of the fact that molecular polarizability is additive,
MLR was applied to build up those models (models 1A, 2A,
2B, 2C, and 2D).

Ab initio optimizations at the B3LYP/6-31G* level were
performed for all the 420 molecules with the Jaguar package
of Schrodinger LLC.26 Molecular polarizability was calculated
by solving the coupled perturbed Hartree-Fock (CPHF) equa-
tions with electric field perturbations. The ab initio polarizability
was compared not only to the experimental value but also to
that predicted by empirical models.

3. Results and Discussion

3.1. Models Based on Glen’s Approach.A genetic algorithm
was applied to optimize the effective quantum numbers,n*,
and to make the calculated molecular polarizabilities by eqs
6-8 reproduce the experimental values. For model 1A, GA was
performed five times and very similar results were obtained
(APE ) 2.7736, 2.7742, 2.7739, 2.7735, 2.7734 for five runs),

indicating that the GA settings were sufficient to lead GA to
converge. The fifth model was adopted as the last model. The
calculated average unsigned error, root-mean-square error and
average percent error were 2.23 au, 3.29 au, and 2.77%,
respectively.

By having more than onen* parameter for a quantum number
n, model 1B was expected to have a better performance. It is
true that the errors of model 1B were marginally smaller, which
were 1.95 au, 2.88 au, and 2.46% for AUE, RMSE, and APE,
respectively. However, the slightly better performance could
not compensate the use of 10 more parameters. Therefore, we
think model 1A is a better model in practice. The molecular
polarizabilities of the 420 molecules predicted by both models
are listed in Table S2 of the Supporting Information. The AUE,
RMSE, and APE are summarized in Table 2. The effective
quantum number parameters of both models are listed in Table
3. The plot of experimental versus calculated polarizabilities
predicted by model 1A for the whole data set is shown in Figure
1. Although the performance of model 1A is slightly worse than
that of the Bosque and Sales model that had an APE of 2.23%,13

model 1A applies only half of the descriptors of the Bosque
and Sales model. Therefore, we believe model 1A is more
reliable and may perform better for novel compounds not
covered by the Bosque and Sales model.

To test the reliability of model 1A, model 1A_validation was
constructed just using the training set molecules and then applied
to predict molecular polarizabilities for the molecules in the

TABLE 2: List of the Performance of Molecular
Polarizabilities Prediction by a Set of Eleven Models for the
Bosque and Sales’ Data Set (Ref 13)a

modelsb AUE (au) RMSE (au) APE (%)

M1A 2.23 3.29 2.77
M1AV 2.25 3.31 2.78
M1AV for training set 2.22 3.29 2.81
M1AV for test set 2.37 3.42 2.66
M1AP 26.04 32.01 31.65
M1B 1.95 2.88 2.46
M2A 1.68 2.29 2.20
M2AP 1.68 2.29 2.21
M2B 1.32 1.96 1.72
M2C 1.09 1.59 1.42
M2D 1.08 1.56 1.38
M2E 0.99 1.48 1.24
M2EV 1.04 1.52 1.30
M2EV for training set 1.01 1.52 1.31
M2EV for test set 1.13 1.51 1.29

a The whole data set is divided into training set (no. 1-335) and test
set (no. 336-420). AUE, RMSE, and APE are average unsigned error,
root-mean-square error, and average percent error, respectively.b M1A
) model 1A; M1AV ) model 1A validation; M1B) model 1B; M2A
) model 2A; M2AP) model 2A paper; M2B) model 2B; M2C)
model 2C; M2D) model 2D; M2E) model 2E; M2EV) model 2E
validation.

TABLE 3: List of Effective Quantum Number Parameters
for the Four Models Based on Glen’s Scheme

parameter model 1A
model 1A
validationa

model 1A
paperb model 1B

n1 0.90488 0.90830 0.94000 0.88643
n2 2.01297 2.01180 1.88000 2.81320
n3 2.81108 2.80943 2.65000 1.79504
n4 2.62613 2.62596 3.15000 1.28852
n5 2.81449 2.81454 3.35000 2.07080
n6 3.25160
n7 0.65683
n8 2.77171
n9 1.72830
n10 2.80851
n11 2.62696
n12 2.81902
n13 4.26174
n14 3.73676
n15 2.44175

a Same to model 1A except being constructed only with the 335
training set moleculesb Glen’s model (ref 17).

Figure 1. Plot of calculated versus experimental polarizability (au) of
the 420-molecule set using model 1A with the corresponding regression
equation.
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test set. The results were very encouraging: the AUE, RMSE,
and APE were 2.22 au, 3.29 au, and 2.81% for the 335
molecules in the training set, respectively; and 2.37 au, 3.42
au, and 2.66% for the 85 molecules in the test set. Interestingly,
although the AUE and RMSE of the test set were marginally
higher, the APE was not.

We also tested how Glen’s parameter set performed in
predicting molecular polarizability for the 420-molecule data
set. The three errors were much larger than that of both model
1A and model 1B, which were 26.04 au, 32.01 au, and 31.65%
for AUE, RMSE, and APE, respectively. It should be pointed
out that it is somewhat unfair to make such comparisons,
considering Glen’s data set, which probably included many low-
quality data, was quite different from the one we used.

3.2. Models Based on the Summation of Atomic Polariz-
abilities. The theoretical basis of models 2A, 2B, 2C, 2D, and
2E is the additive property of polarizability. Molecular polar-
izability is calculated with eq 5. The atomic polarizabilities,ci

in this equation, were obtained by regression analysis. Same as
the Bosque and Sales’ model, model 2A applied ten descriptors
(each element has one atom type) to create a model. The
performance (AUE) 1.68 au, RMSE) 2.29 au, APE) 2.20%)
was only slightly different from that of the Bosque and Sales
model due to the exclusion of six compounds. In model 2B,
sp1, sp2, and sp3 carbons were allowed to take different
parameters and the performance of the fitting was significantly
improved (AUE) 1.32 au, RMSE) 1.96 au, APE) 1.72%).

We examined the error sources of model 2B and found
that many sulfur-containing compounds had large prediction

errors. Therefore, we decided to make the sulfur in sulfone
functional group be differentiated from the other kinds of sul-
furs. This resulted in another model, model 2C. The perfor-
mance of model 2C was further improved and AUE,
RMSE, and APE were 1.09 au, 1.59 au, and 1.42%, respectively.

For model 2C, we found that some nitrogen-containing
compounds, especially nitro derivatives had large prediction
errors. Two schemes were designed to introduce more atom
types. In the first scheme, the discrimination of three atoms
bonded sp2 nitrogen from the other nitrogen atoms leads to
model 2D; in the second scheme, nitrogen in the nitro func-
tional group was separated from the other nitrogen atoms
(model 2E). The performance of model 2D (AUE) 1.08 au,
RMSE ) 1.56 au, APE) 1.38%) was only marginally better
than that of model 2C, indicating that this atom type
scheme was not effective. In contrast, model 2E achieved a
much better performance, which had 0.99 au, 1.48 au, and
1.24% for AUE, RMSE, and APE, respectively. This was a very
encouraging result because both AUE and APE of model
2E are reduced about 50% compared to those of models
based on chemical composition (model 2A and the Bosque and
Sales model), with a small price of adding four more atom
types.

Based on model 2E, a validation model (model 2E_validation)
was generated by fitting atomic polarizability parameters only
using the 335-molecule training set. The AUE, RMSE, and APE
for the training set molecules were 1.01 au, 1.52 au, and 1.31%,
respectively, and the corresponding errors were 1.13 au, 1.51
au, and 1.29% for the 85 molecules in the test set. The quite

TABLE 4: List of Atomic Polarizability Coefficients for the Seven Models Based on the Additive Hypothesis of Steric
Molecular Polarizability

elem atom type model 2A model 2B model 2C model 2D model 2E
model 2E
validationa

model 2A
paperb

C C1 (sp1) 10.175 10.768 10.079 10.257 10.152 10.253 10.19
C C2 (sp2) 10.175 8.803 8.757 8.76 8.765 8.865 10.19
C C3 (sp3) 10.175 5.594 5.679 5.669 5.702 5.814 10.19
H 1.177 3.391 3.386 3.402 3.391 3.365 1.174
F 1.447 3.742 3.383 3.847 3.833 3.794 1.498
CI 14.643 16.068 16.473 16.417 16.557 16.394 14.576
Br 22.303 24.171 24.367 24.626 24.123 24.693 22.202
I 36.692 38.554 38.896 39.065 38.506 39.409 36.778
N NO N in nitro 7.093 5.698 6.341 5.917 10.488 11.55 6.951
N NA sp2 N with three bonded atoms 7.093 5.698 6.341 7.903 6.335 6.162 6.951
N N 7.093 5.698 6.341 5.917 6.335 6.162 6.951
O 3.829 4.2 4.482 4.432 4.307 4.259 3.853
S SO S in sulfone 19.757 20.265 15.515 15.385 15.726 16.109 20.178
S S 19.757 20.265 22.481 22.326 22.366 22.351
P 15.892 14.89 10.968 11.509 11.173 10.813 16.736
constant 2.252 -0.837 -1.46 -1.548 -1.529 -1.758 2.146

a Same as model 2E except being constructed only with the 335 training set molecules.b Bosque and Sale’s model (ref 13).

TABLE 5: List of the Performance of the Six Models Based on the Additive Hypothesis of Steric Molecular Polarizability
(in au)

model 2A model 2B model 2C model 2D model 2E
model 2E
validation

Leave-One-Out Analysis
components 6 4 5 5 6 5
standard error 2.42 2.13 1.68 1.71 1.57 1.68
q2 0.994 0.996 0.997 0.997 0.998 0.997

Full Component Analysis
standard error 2.29 1.96 1.59 1.56 1.48 1.52
r2 0.995 0.996 0.997 0.997 0.998 0.998
n1 6 4 5 5 6 5
n2 413 415 414 414 413 329
F 13092.7 26770.2 32647.6 32163.6 31466.1 26497.5
prob ofr2 ) 0 0 0 0 0 0 0
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similar prediction performance of both the training and test sets
implied that this series of models was reliable.

The molecular polarizabilities of the 420 molecules calculated
by all the six models (models 2A, 2B, 2C, 2D, 2E, and
2E_validation) are listed in Table S2 of the Supporting
Information and the AUE, RMSE, and APE are summarized in
Table 2. The atomic polarizability parameters of those models
are listed in Table 4. The plot of experimental versus calculated
polarizabilities predicted by model 2E, the best model, for the
whole data set is shown in Figure 2.

Quantum mechanical molecular polarizabilities of the 420
molecules, obtained by solving the CPHF equations, are listed
in Table S1. It is clear that the B3LYP/6-31G* polarizabilities
are systematically smaller than those experimental values. The
AUE, APE, and RMSE were 16.03 au, 16.67 au, and 19.97%,
respectively. A very good correlation between QM and experi-
mental polarizabilities was identified (R2 ) 0.9901,Rqm

corr )
1.1176Rqm + 8.0311). After corrections with this linear regres-
sion model, the AUE, RMSE, and APE now are 2.11 au, 31.5
au, and 2.95%, respectively. It is quite obvious that the
performance is still inferior to those of the empirical models
developed in this work.

We also calculated molecular refraction for the 420 molecules
with the CMR program implemented in Sybyl7.0.25 Interest-
ingly, CMR correlated very well to the experimental polariz-
ability (R2 ) 0.997, RMSE) 1.708,F ) 143 462.113). It was
not a surprising result at all, given the relationship between
molecular polarizability and molecular refraction revealed by
the Lorentz-Lorenz equation (eq 2).

4. Conclusions

In this work, taking the advantage of a high-quality 420-
molecule data set, we developed a set of empirical models to
predict molecules’ static polarizabilities. The best model based
on Glen’s approach is model 1A, which has AUE, RMSE, and
APE of 2.23 au, 3.29 au, and 2.77%, respectively. Although its
performance is slightly poorer than the Bosque and Sales model
based on chemical composition, model 1A is attractive because
it only applies five effective quantum numbers as descriptors.
GA has once again been proved to be able to handle some
nonlinear problems like this one.

Five other models rooted on the additive hypothesis of
molecular polarizability were developed through linear regres-
sion. It is encouraging that by adding four more atom types,
model 2E achieves a much better performance than model 2A,
which is purely based on chemical composition (each element
has only one atom type), indicated by AUE, RMSE, and APE
of 0.99 au, 1.48 au, and 1.24%, respectively. We believe that

both model 1A and model 2E will have great applications on
QSAR and QSPR studies.
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